http:/www.kumpulsoal.com
MATA PELAJARAN : Matematika
UNTUK: SMA Kelas 3 UN dan UASBN
MATERI: 1.   Latihan UN SMA Matematika Paket 1


Status keanggotaan Anda saat ini adalah BELUM MENJADI MEMBER KUMPULSOAL.COM !
Dapatkan soal-soal berikut kunci jawaban yang lebih banyak dengan menjadi MEMBER di KUMPULSOAL.COM!

SOAL PILIHAN GANDA

1.  

Rasa kesatuan dalam bertanah air, berbangsa dan berbahasa membangkitkan semangat mereka untuk berjuang.


Kalimat berikut yang menggunakan kata berimbuhan men-kan yang makna
Pengimbuhannya sama dengan yang terdapat pada membangkitkan di atas adalah ........

 
A.

Tukang lampu itu meninggikan tangga

B.

Tim perumus sedang hasil loka karya itu

C.

Memperbudakkan pramuwisma tidak sesuai dengan HAM

D.

Terdakwa menceritakan urutan peristiwa kepada hukum


2.  

Bibi membagikan kue kepada 5 orang anaknya menurut aturan deret aritmetika. Semakin tua usia anak semakin sedikit kue yang diperoleh. Jika banyak kue yang diterima anak kedua 11 buah dan anak keempat 19 buah, maka jumlah seluruh kue adalah …buah.

 
A.

50

B.

65

C.

75

D.

80


3.  

Sebuah kotak A terdapat 4 bola merah dan 3 bola putih, kotak B berisi 6
bola merah dan 2 putih. Dari masing-masing kotak diambil, maka peluang yang
terambil bola merah dari kotak A dan putih dari kotak B adalah ......

 
A.

 8/17

B.

 8/7

C.

 1/7

D.

 1/56


4.  

Sebuah bola dijatuhkan dari lantai dengan ketinggian 10 m dan memantul kembali dengan ketinggian ¾ kali tinggi sebelumnya, begitu seterusnya hingga bola berhenti. Maka jumlah seluruh lintasan bola adalah ….

 
A.

69

B.

70

C.

71

D.

72


5.  

Diketahui suatu persamaan 4x² - px + 25 = 0 memiliki akar-akarnya yang sama. Maka Nilai p adalah ....

 
A.

-30 atau 30

B.

-12 atau 12

C.

-5 atau 5

D.

-20 atau 20


6.  

Grafik fungsi kuadrat yang persamaannya y = ax² - 5x - 3 memotong sumbu x. Salah satu
titik potongnya adalah (-1/2 , 0), maka nilai a sama dengan .......

 
A.

-32

B.

-2

C.

2

D.

11


7.  

 Diketahui lingkaran ( x – 2 )² + ( y + 1 )² =13, salah satu persamaan garis singgung yang berada di titik yang berabsis –1 adalah …

 
A.

3x – 2y + 5 = 0

B.

3x – 2y + 4 = 0

C.

3x – 5y + 5 = 0

D.

2x – 2y + 5 = 0


8.  

Siti Rahma menabung di suatu bank pemerintah. Pada bulan pertama Siti Rahma menabung sebesar Rp 50.000,00, bulan kedua Siti Rahma menabung Rp 55.000,00, bulan ketiga Siti Rahma menabung Rp60.000,00, dan seterusnya. Besar tabungan anak tersebut selama 2 tahun adalah ........

 
A.

Rp 2.580.000,00

B.

Rp 2.585.000,00

C.

Rp 2.590.000,00

D.

Rp 2.595.000,00


9.  

Pada sebuah toples terdapat 10 kancing yang terdiri dari 7 kancing warna merah, dan 3
kancing berwarna biru. Jika diambil 3 kancing secara acak, maka peluang terambil tiga
kancing tersebut berwarna merah adalah ........

 
A.

23/24

B.

5/7

C.

5/24

D.

7/24


10.  

Pernyataan " Jika kamu rajin belajar, maka kamu lulus ujian " ekuivalen dengan ........

 
A.

Jika kamu tidak lulus ujian, maka kamu tidak rajin belajar

B.

Jika kamu lulus ujian, maka kamu rajin belajar

C.

Jika kamu tidak rajin belajar, maka kamu lulus ujian

D.

Jika kamu tidak lulus ujian, maka kamu rajin belajar


11.  

Fungsi f : R ->R dan g : R-> R ditentukan oleh f(x) = 2x - 1 dan g(x) = 5x - x². Nilai (f o g) (-1) adalah ........

 
A.

-13

B.

-6

C.

-24

D.

-9


12.  

Jika suku pertama dari barisan deret Geometri adalah 25 dan suku ke-9 adalah 6400. Maka suku
ke-5 deret ini adalah .....

 
A.

400

B.

500

C.

450

D.

550


13.  

Peluang munculnya mata dadu berjumlah 7 atau 10 dari dua buah dadu yang dilempar bersama-sama satu kali adalah ........

 
A.

1/4

B.

2/6

C.

3/8

D.

2/10


14.  

Dari 10 peserta finalis lomba bayi sehat akan dipilih secara acak 3 yang tesehat. Maka banyaknya cara pemilihan tersebut ada … cara

 

 
A.

120

B.

240

 

C.

123

D.

332


15.  

Nilai F'(x) dari fungsi F(x) = (3x - 2) sin (2x + 1) adalah  ....

 
A.

3 sin (2x + 1) + (6x - 4) cos (2x + 1)

B.

3 cos (2x + 1) + (6x - 4) cos (2x + 1)

C.

3 sin (2x + 1) + (6x - 4) sin (2x + 1)

D.

3 cos (2x + 1) + (6x - 4) sin (2x + 1)


16.  

Dalam suatu rapat siswa yang terdiri dari 6 orang dalam posisi yang melingkar. Jika ketua dan
wakil harus selalu duduk bersebelahan, ada berapa formasi duduk yang bisa dibentuk….

 
A.

12

B.

27

C.

36

D.

48


17.  

 Diketahui pertidaksamaan 3x² - 2x - 8 > 0, untuk x anggota  R, maka himpunan penyelesaian adalah....

 
A.

 {x | x > 2 atau x < -4/5}

B.

 {x | x > 2 atau x < -4/3}

C.

 {x | x > 3 atau x < -4/3}

D.

 {x | x > 2 atau x < -5/3}


18.  

f(x) = sin³ (5x + 8) memiliki turunan ........

 
A.

15 sin² (5x + 8) sin (5x + 8)

B.

15 sin² (5x + 8) cos (5x + 8)

C.

15cos² (5x + 8) cos (5x + 8)

D.

15 sin (5x + 8) cos (5x + 8)


19.  

Dua buah dadu bermata enam dilemparkan satu kali secara bersamaan. Peluang
munculnya jumlah mata dadu 5 atau jumlah mata dadu 10 adalah ....

 
A.

5/36

B.

6/36

C.

7/36

D.

8/36


20.  

Jumlah n suku pertama suatu deret Aritmatika adalah S n = n² - n , suku ke-10 deret ini
adalah .......

 
A.

72

B.

18

C.

11

D.

8


21.  

Persamaan lingkaran denan pusat yang terletak di garis 2x – 4y – 4 = 0, dan menyinggung sumbu x negatif dan sumbu y negatif adalah ….

 
A.

x² - y² + 4x - 4y + 4 = 0

B.

x² + y² - 4x + 4y - 4 = 0

C.

x² - y² - 4x - 4y - 4 = 0

D.

x² + y² + 4x + 4y + 4 = 0


22.  

Jika jumlah n suku pertama dari sebuah deret Aritmatika adalah S n = 1/2 n (3n - 1). Maka beda
deret Aritmatika tersebut adalah ....

 
A.

3

B.

4

C.

5

D.

6


23.  

( x – 2 ) habis membagis suku banyak P(x) = 3x3 – 4x2 – 6x + k . maka Sisa pembagian P(x) oleh x2 + 2x + 2 adalah ….

 
A.

5x + 34

B.

8x + 25

C.

9x + 24

D.

8x + 24


24.  

Diketahui suatu fungsi  f : R --> R dan g : R--> R ditentukan oleh f(x) = 2x - 1 dan g(x) = 5x - x². Nilai (g o f) (-1) adalah ........

 
A.

-21

B.

-23

C.

-24

D.

-25


25.  

Suatu kotak berisi 5 bola merah dan 3  bola putih. Dua  bola diambil satu
persatu di mana  bola pertama yang diambil dikembalikan lagi dalam kotak.
Peluang terambilnya  bola pertama pertama dan kedua berwarna merah adalah ....

 
A.

25/64

B.

33/45

C.

12/76

D.

66/33


26.  

Diketahui suatu parabolaberpuncak di titik (2, 4) dan fokus (5, 4), maka persamaannya adalah ........

 
A.

(y - 4)² = 8 (x - 2)

B.

(y - 2)² = 12 (x - 2)

C.

(y - 4)² = 12 (x - 2)

D.

(y - 4)² = 12 (x - 4)


27.  

Disuatu perkumpulan akan dipilih perwakilan yang terdiri dari 3 orang pria dan 2 orang
wanita. Jika perkumpulan tersebut terdiri dari 7 pria dan 8 wanita, berapa banyak susunan
perwakilan yang dapat dibentuk….

 
A.

809

B.

908

C.

890

D.

980


28.  

Simpangan kuartil dari data berikut ini : 2, 4, 3, 2, 6, 5, 5, 5, 4, 8, 7, 6, 8, 4, 3 adalah .....

 
A.

1,4

B.

1,8

C.

1,3

D.

1,5


29.  

Pernyataan majemuk : Jika hari hujan maka selokan meluap, ekuivalen dengan ........

 
A.

Jika selokan tidak meluap, maka hari tidak hujan

B.

Jika selokan  meluap, maka hari tidak hujan

C.

Jika selokan tidak meluap, maka hari hujan

D.

Jika selokan  meluap, maka hari  hujan


30.  

Sebuah toples berisi 5 kue cokelat, 4 kue kacang, dan 3 kue nanas. Dari dalam toples diambil 3 kue sekaligus secara acak, peluang terambil  2 kue cokelat dan 1 kue kacang adalah ….

 
A.

11/13

B.

4/11

C.

2/11

D.

12/13


31.  

 Nilai dari 22x + 2–2x  jika diketahui Diketahui 2x + 2–x = 5 adalah....

 
A.

9

B.

17

C.

23

D.

25


32.  

Jari-jari lingkaran dari persamaan lingkaran yang berpusat di 0 dinyatakan dengan y² = a - x² dengan nilai a sebagai salah satu akar persamaan x² - 3x - 4 = 0 adalah ........

 
A.

1

B.

2

C.

5

D.

6


33.  

Diketahui persamaan (x + 2)² = -8(y - 3), maka Koordinat titik fokus parabolanya  adalah ........

 
A.

(2, -1)

B.

(-2, -1)

C.

(2, 1)

D.

(-2, 1)


34.  

Nilai dari Cos 315° adalah ......

 
A.

 ½√3

B.

 ½√2

C.

 ½√5

D.

 ½√6


35.  

Parabola mempunyai puncak dititik (n,m) dan terbuka ke atas, rumus fungsinya adalah....

 
A.

-y = (x - n)² - m

B.

y = -(x - n)² + m

C.

y = (x - n)² - m

D.

y = (x - n)² + m


36.  

Diketahui persamaan lingkaran x² + y² = 10, maka salah satu persamaan garis singgung yang ditarik dari titik A (0, 10) ke persamaan lingkaran itu adalah .......

 

 
A.

y = -3x + 10

B.

y = -2x + 10

C.

y = -3x + 12

D.

y = -2x + 12


37.  

Persamaan 4x² - px + 25 = 0 akar-akarnya sama. Nilai p adalah ....

 
A.

-2 atau 2

B.

-20 atau 20

C.

-5 atau 5

D.

-10 atau 10


38.  

 

Nilai  f(y') dari suatu bilangan kompleks y = 4 + 3i dan f(y) = y² + 2y dengan y' adalah kawan dari y adalah ....

 
A.

30 - 15i

B.

15 - 20i

C.

16 - 30i

D.

15 - 30i


39.  

Dalam suatu ruangan terdapat 30 orang. Setiap orang saling bersalaman. Banyaknya
salaman yang dilakukan seluruhnya adalah ....

 
A.

124

B.

543

C.

335

D.

435


40.  

Nilai minimum dari 2x + 3y pada daerah himpunan penyelesaian pada daerah yang diarsir tersebut adalah....

 
A.

17

B.

18

C.

19

D.

20


41.  

Bentuk sederhana dari ( 1 + 3√2) – ( 4 – √50  ) adalah ….

 
A.

-2 +  8√2

B.

2 +  8√2

C.

3 +  8√2

D.

– 3 +  8√2


42.  

Nilai optimum dari 2x + 3y pada daerah himpunan penyelesaian pada daerah yang diarsir tersebut adalah....

 
A.

45

B.

22

C.

31

D.

12


43.  

Kontraposisi dari implikasi : " Jika ujian lulus, maka Ali dibelikan sepeda " adalah .......

 
A.

Jika Ali tidak dibelikan sepeda, maka Ali tidak lulus ujian.

B.

Jika Ali dibelikan sepeda, maka Ali tidak lulus ujian.

C.

Jika Ali tidak dibelikan sepeda, maka Ali lulus ujian.

D.

Jika Ali dibelikan sepeda, maka Ali lulus ujian.


44.  

Diketahui suatu fungsi  f : R --> R dan g : R--> R ditentukan oleh f(x) = 2x - 1 dan g(x) = 5x - x². Nilai (f o g) (-1) adalah ........

 
A.

-11

B.

-12

C.

-13

D.

-14


45.  

 Nilai p² + q² dari persamaan 2x² + 6x = 1, dengan  Akar-akarnya  p dan q adalah ........

 
A.

8

B.

9

C.

10

D.

11


46.  

Suku pertama dari barisan deret Geometri adalah 25 dan suku ke-9 adalah 6400. Suku
ke-5 deret ini adalah .....

 
A.

400

B.

1600

C.

200

D.

100


47.  

Diketahui terdapat empat angka 4, 5, 6 dan 7. Banyak cara untuk menyusun bilangan-bilangan
yang terdiri dari empat angka dengan syarat bahwa bilangan-bilangan itu tidak
mempunyai angka yang sama adalah .... cara.

 
A.

23

B.

24

C.

25

D.

26


48.  

Dari tujuh bunga yang berbeda-beda warnanya, akan dibentuk hiasan bunga yang
terdiri dari tiga warna berbeda. Maka banyaknya cara menyusun hiasan bunga tersebut adalah .....

 
A.

35

B.

25

C.

16

D.

22


49.  

Invers dari pernyataan (p^ ~q) =>p adalah...

 
A.

(~pvq)=>p

B.

(~pvq)=>~p

C.

(~p^q)=>~p

D.

(pvq)=>~p


50.  

Jumlah n suku pertama suatu deret Aritmatika adalah S n = n² - n , suku ke-10 deret ini
adalah .......

 
A.

11

B.

8

C.

16

D.

9



Status keanggotaan Anda saat ini adalah BELUM MENJADI MEMBER KUMPULSOAL.COM !
Dapatkan soal-soal berikut kunci jawaban yang lebih banyak dengan menjadi MEMBER di KUMPULSOAL.COM!

KUNCI JAWABAN

KUNCI JAWABAN PILIHAN GANDA : 1

1. Jawaban:A PENJELASAN:

Arti imbuhan me-kan pada kata membangkitkan adalah membuat jadi tinggi


2. Jawaban:C PENJELASAN:

Diketahui : n = 5, anak kedua = U2 = 11, anak keempat = U4 = 19

Ditanya     : Jumlah seluruh permen / S5 ?

Jawab        :

Un = a + ( n – 1 )b

U2 = 11

U2 = a + ( 2 – 1 )b = 11

U2 = a + b = 11     … (1)

U4 = 19

U4 = a + ( 4 – 1 )b = 19

U4 = a + 3b = 19   … (2)

Eliminasi kedua persamaan :

U2 = a + b = 11     … (1)

U4 = a + 3b = 19   … (2)

                  –2b = –8

                  b = 4

Subtitusi nilai b ke salah satu persamaan :

a + b = 11 … (1)

a + 4 = 11

a = 11 – 4 = 7

Setelah nilai a dan b kita dapatkan baru kita mencari nilai dari S5

Sn =  { 2a + ( n – 1 )b }

S5 =   { 2(7) + ( 5 – 1 )4 }

S5 =   { 14 + (4 )4 }

S5 =   { 14 + 16 }

S5 =   { 30 }

S5 = 75


3. Jawaban:C PENJELASAN:

P = 4/7 . 2/8

   = 8/58

   = 1/7


4. Jawaban:B PENJELASAN:

Diketahui  :

Tinggi bola jatuh   : 10m

Pantulan pertama  = 10m x ¾ = 7,5m

Ditanya     : Panjang lintasan ?

Dari gambar kita bisa lihat bahwa jarak antara pantulan pertama sama dengan jarak bola jatuh pada pantulan pertama, begitu juga dengan pantulan kedua dan seterusnya.

Sehingga dari gambar kita dapat mengambil kesimpulan seluruh lintasan yang dilalui bola adalah : Tinggi bola jatuh + 2 kali jarak bola memantul/jatuh kembali.

Atau dapat kita rumuskan sebagai berikut :

Panjang lintasan = 10 + 2 kali deret tak hingga (dimulai pantulan pertama bukan ketika bola jatuh)


5. Jawaban:D PENJELASAN:

b² - 4ac = 0
p² - 4(4) . (25) = 0
p² - 400 = 0
p = ± 20


Kunci jawaban pilihan ganda berikutnya akan muncul bila kamu menjadi member !
6. Jawaban:C PENJELASAN:

y = ax² - 5x - 3
Titik (-1/2 , 0) :
0 = a(-1/2 )² - 5(-1/2 ) - 3
1/4a + 5/2 - 3 = 0 dikalikan 4
a + 10 - 12 = 0
a -2 = 0
a = 2


7. Jawaban:A PENJELASAN:

Langkah 1 :

Substitusi nilai x = –1 pada persamaan ( x – 2 )² + ( y + 1 )² =13,

sehingga didapat (–1 – 2 )² + ( y + 1 )² =13 :

(–1 – 2 )² + ( y + 1 )² =13 :

9 + ( y + 1 )² =13

( y + 1 )² =13 – 9

( y + 1 )² = 4

y + 1 = ± 2

y = –1 ± 2, sehingga didapat :

y1 = –1 – 2              y2 = –1 + 2

y1 = –3                    y2 = 1

didapat koordinat titik singgungnya adalah : ( –1,–3 ) dan ( –1,1 )

Langkah 2 :

Persamaan garis singgung pada umumnya “ membagi adil “ persamaan.

Dari persamaan ( x – 2 )² + ( y + 1 )² = 13 jika berbagi adil maka menjadi persamaannya menjadi

( x – 2 ) ( x – 2 ) + ( y + 1 ) ( y + 1 ) = 13, kemudian substitusikan kedua koordinat titik singgungnya.

( –1,–3 )                                                                  ( –1,1 )

(–1 – 2 ) ( x – 2 ) + (–3 + 1 ) ( y + 1 ) = 13                  (–1 – 2 ) ( x – 2 ) + ( 1 + 1 ) ( y + 1 ) = 13

–3 ( x – 2 ) + –2 ( y + 1 ) = 13                                   –3 ( x – 2 ) + 2 ( y + 1 ) = 13

–3x + 6 – 2y – 2 = 13                                               –3x + 6 + 2y + 2 = 13

–3x – 2y + 4 – 13 = 0                                               –3x + 2y – 13 + 8 = 0

–3x – 2y – 9 = 0                                                      –3x + 2y – 5 = 0

{kedua ruas dikalikan dengan (–)}, maka akan diperoleh :

3x + 2y + 9 = 0                    atau                              3x – 2y + 5 = 0 


8. Jawaban:A PENJELASAN:

Tabungan membentuk deret aritmatika :
a = 50.000
b = 55.000 - 50.000 = 5.000
n = 2 x 12 = 24

S= 1/2 n (2a + (n-1) b)

    = 1/2 24 (2 . 50000 + 23 . 5000)

    = 12 (100000 + 115000) = 12 (215000) = Rp 2.580.000,00


9. Jawaban:D PENJELASAN:


10. Jawaban:A PENJELASAN:

p --> q ekuivalen dengan ~ q --> ~ p


11. Jawaban:A PENJELASAN:

(f o g) (-1) = f(g(-1))
= f(5(-1) - (-1)²)
= f(-6)
= 2(-6) - 1
= -12 -1 = -13


12. Jawaban:A PENJELASAN:

a = 25
U9 = ar 8
6400 = 25 . r 8
r 8 = 256
r = 2
U 5 = ar 4
= 25 . (2) 4 = 25 . 16
= 400


13. Jawaban:A PENJELASAN:

Mata dadu berjumlah 7 atau 10 adalah :
(1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1) (4, 6) (5, 5) (6, 4)
Karena ruang sampel2 dadu adalah 36, Jadi peluang munculnya mata dadu berjumlah 7 atau 10 adalah 9/36 = 1/4


14. Jawaban:A PENJELASAN:

 


15. Jawaban:A PENJELASAN:

F(x) = (3x - 2) . sin (2x + 1)
Misalkan : u = 3x - 2, u' = 3
v = sin(2x + 1), v' = 2 cos(2x + 1)
F'(x) = u'v + uv'
F'(x) = 3 sin (2x + 1) + (3x - 2) . 2 cos (2x + 1)
= 3 sin (2x + 1) + (6x - 4) cos (2x + 1)


16. Jawaban:D PENJELASAN:

Karena ketua dan wakil harus selalu duduk bersebelahan, maka kita anggap sebagai satu orang, jadi,
  p =(n-1)! =(5 - 1)! =  4! = 24
Untuk posisi ketua dan wakil = 2! = 2. Jadi, formasi yang dapat dibentuk = 24 x 2 = 48


17. Jawaban:B PENJELASAN:

3x² - 2x - 8 > 0 <=> (3x + 4) (x - 2) > 0

Jadi himpunan penyelesaian pertidaksamaan 3x² - 2x - 8 > 0 adalah {x | x > 2 atau x < -4/3}


18. Jawaban:B PENJELASAN:

f(x) = sin³ (5x + 8)
f'(x) = 3 sin² (5x + 8) . cos (5x + 8)
f'(x) = 15 sin² (5x + 8) cos (5x + 8)


19. Jawaban:C PENJELASAN:

Peluang muncul jumlah mata dadu 5 adalah 4/36

Peluang muncul jumlah mata dadu 10 adalah 3/36

Jadi, peluang jumlah mata dadu 5 atau 10 adalah: 

P(A) + P(B) = 4/36 + 3/36

                 = 7/36


20. Jawaban:D PENJELASAN:

Penyelesaian :
U10 = S 10 - S 9
= [(10)² - 10] - [(9)² - 9]
= 100 - 10 - 82
= 8


21. Jawaban:D PENJELASAN:

Dari soal terdapat pernyataan “ menyinggung smbu x negatif dan sumbu y negatif “, itu artinya lingkaran berada di kuadran III. Karena pusat lingkaran menyinggung kedua sumbu maka nilai x dan y pastinya sama sehingga didapat persamaan x = y.

Substitusikan x = y pada persamaan garis 2x – 4y – 4 = 0, didapat :

2x – 4(x) – 4 = 0

–2x = 4

x = –2, karena x = y maka koordinat pusat lingkarannya adalah ( –2,–2 ). Karena lingkaran menyinggung sumbu x dan sumbu y maka jari – jri lingkaran adalah 2.

Subtitusikan nilai yang didapat pada persamaan umum limgkaran :

( x – x1 )² + ( y – y1 )² = r²

( x + 2 )² + ( y + 2 )² = 2²

x² + y² + 4x + 4y + 4 = 0


22. Jawaban:A PENJELASAN:


23. Jawaban:D PENJELASAN:


24. Jawaban:C PENJELASAN:

(g o f) (-1) = g(f(-1))
= g(2(-1) - 1)
= g(-3)
= 5(-3) -  (-3)2
= -15 -9 = -24


25. Jawaban:A PENJELASAN:

Karena setelah pengambilan yang pertama dikembalikan lagi dalam kotak, maka
peristiwa tersebut saling bebas maka :


26. Jawaban:C PENJELASAN:

Persamaan parabola (y - k)² = 4p(x - h) berpuncak di (h, k) dan fokus (h + p, k)
h = 2, k = 4
h + p = 5
2 + p = 5
p = 5 - 2 = 3
(y - k)² = 4p(x - h)
(y - 4)² = 4.3(x - 2)
(y - 4)² = 12(x - 2)


27. Jawaban:D PENJELASAN:


28. Jawaban:D PENJELASAN:

2,2,3,3,4,4,4,5,5,5,6,6,7,8,8

        Q1       M        Q3

 

Qd = 1/2 (Q3-Q1)

     = 1/2 (6-3)

     = 1,5


29. Jawaban:A PENJELASAN:

p => q ekuivalen dengan ~q => ~p
Jika hari hujan, maka selokan meluap, ekuivalen dengan "Jika selokan tidak meluap, maka
hari tidak hujan."


30. Jawaban:C PENJELASAN:

n(A) = banyaknya muncul kejadian  2 kue cokelat dan 1 kue kacang

n(S) = banyaknya muncul kejadian terambilnya 3 kue

 


31. Jawaban:C PENJELASAN:

2x + 2–x = 5            ( kuadratkan kedua ruas )

( 2x + 2–x )2 = 52

22x + 2.2x.2–x  + 2–2x  = 25

22x + 2.2x–x  + 2–2x  = 25

22x + 2.20  + 2–2x  = 25

22x + 2.1  + 2–2x  = 25

22x + 2–2x  = 25 – 2

22x + 2–2x  = 23


32. Jawaban:B PENJELASAN:

x² - 3x - 4 = 0
(x - 4) (x + 1) = 0
x = 4 atau x = -1
y² = a
x² + y² = a
Rumus persamaan lingkaran : x² + y² = r²
Karena r² = 4, maka r = 2
Jari-jari lingkaran itu adalah 2


33. Jawaban:D PENJELASAN:

Koordinat titik fokus dari parabola (x - a)² = 4p(y - b) adalah F(a, b + p)
Parabola : (x + 2)² = -8(y - 3)
(x + 2)² = 4(-2)(y - 3) jadi a = -2, b = 3, p = -2
maka koordinat titik fokus parabola (x + 2)² = -8(y - 3) adalah (-2, 1)


34. Jawaban:B PENJELASAN:

Cos 315° = cos (360° - 45°) = Cos 45° = ½√2


35. Jawaban:D PENJELASAN:

y - m = (x - n)²
y = (x - n)² + m


36. Jawaban:A PENJELASAN:

Persamaan garis singgung yang melalui A (0, 10) : y - 10 = m (x - 0)
y = mx + 10

x² + y² = 10
x² + (mx + 10)² = 10

x² + m²x² + 20 mx + 100 - 10 = 0
(1 + m²) x² + 20 mx + 90 = 0
D = 0
b² - 4 a c = 0
(20m)² - 4 (1 + m)² . 90 = 0
400m² - 36m - 360m² = 0
40m² = 360
m² = 9
m = -3 atau m = 3
Persamaan garis singgung :
y = -3x + 10 atau y = 3x + 10


37. Jawaban:B PENJELASAN:

Syarat kedua akarnya sama : D = 0
b² - 4ac = 0
p² - 4(4) . (25) = 0
p² - 400 = 0
p = ± 20


38. Jawaban:D PENJELASAN:

y = 4 + 3i => y' = 4 - 3i
f(y') = (y')² + 2(y') = (4 - 3i)² + 2(4 - 3i) = 16 - 24i - 9 - 8 - 6i = 15 - 30i


39. Jawaban:D PENJELASAN:

Soal ini berkaitan dengan kombinasi.
Banyaknya salaman yang dapat dilakukan dari 20 orang adalah


40. Jawaban:B PENJELASAN:

(6, 2) => nilai (2x + 3y) = 12 + 6 = 18


41. Jawaban:D PENJELASAN:

( 1 + 3√2) – ( 4 –√50   ) = ( 1 + 3√2) – ( 4 – √25.2 )

= ( 1 + 3√2) – ( 4 –  5√2 ) = 1 + 3√2 – 4 +  5√2 = – 3 +  8√2


42. Jawaban:C PENJELASAN:

(5, 7) => nilai (2x + 3y) = 10 + 21 = 31


43. Jawaban:A PENJELASAN:

Kontraposisi dari p -> q adalah ~ q ~ p
p = Ali lulus ujian ; ~ p = Ali tidak lulus ujian ; ~ q = Ali tidak dibelikan sepeda
Kontraposisi dari implikasi tersebut adalah : Jika Ali tidak dibelikan sepeda, maka Ali tidak
lulus ujian.


44. Jawaban:C PENJELASAN:

(f o g) (-1) = f(g(-1))
= f(5(-1) - (-1)²)
= f(-6)
= 2(-6) - 1
= -12 -1 = -13


45. Jawaban:C PENJELASAN:

2x² + 6x - 1 = 0


p + q = -b/a = -6/2 = -3


p . q = c/a = -1/2

p² + q² = (p + q)² - 2pq

           = (-3)² - 2(-1/2 )

           = 9 + 1 = 10

 


46. Jawaban:A PENJELASAN:

a = 25
U9 = ar 8
6400 = 25 . r 8
r 8 = 256
r = 2
U 5 = ar 4
= 25 . (2) 4 = 25 . 16
= 400


47. Jawaban:B PENJELASAN:

Banyaknya cara untuk menyusun bilangan-bilangan yang terdiri dari empata angka
dengan syarat tidak ada bilangan yang sama adalah 4 ! = 4 . 3 . 2 . 1 = 24.


48. Jawaban:A PENJELASAN:


49. Jawaban:B PENJELASAN:

invers dari (p^ ~q) =>p adalah ~(p^ ~q) =>~p

                                             = (~pvq)=>~p


50. Jawaban:B PENJELASAN:

U10 = S 10 - S 9
= [(10)² - 10] - [(9)² - 9]
= 100 - 10 - 82
= 8